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Among the subgroups of the modular group the congruence 
L subgroups with respect to a prime have been the chief 

subject of detailed studies during the initial development of the 
theory of elliptic modular functions by Felix Klein, Adolf1 
Hurwitz, Walter Dyck, Gierster and other authors. Most of 
their papers on this subject are contained in volumes X—XX of 
the Mathematische Annalen. An elaborate exposition has been given 
in volume I of the Theorie der elliptischen Modul funktionen by 
F. Klein and R. Fricke (Teubner, Leipzig 1890), where more 
information about the literature on the subject is to be found.

The way in which the question of the congruence groups is 
approached in these previous investigations contains elements 
of an arithmetical character, of function theory, non-euclidean 
geometry, topology, and group theory. It seems worth while to 
give an introduction to the theory of congruence groups in which 
the rôle of these separate elements and especially the abstract 
group-theoretical characteristics are brought out more clearly. 
For all primes which satisfy a certain arithmetical condition 
(given in section I) I shall attempt to give such a deduction 
on the following pages.

I.
Let q be a prime greater than 5. (Without this restriction some 

special reservations concerning the values 2, 3 and 5 would be 
necessary in the sequel and, on the other hand, no new facts 
of interest concerning these cases are obtained. Hence we omit 
them for simplicity.)

We put q = 2 r + 1, thus r — .

1



4 Nr. 18

All congruences occurring in the sequel are to be understood 
modulo r/ unless otherwise stated.

For every residue class c =|= 0 the congruence

0 c2r-l = (cr-1)(cr+l)
holds, hence

c ~ 1 or — 1,

since q is a prime. If r is the least positive exponent satisfying 
this congruence, we say that c belongs to r.

IVe restrict q by the condition that 2 belongs to r. Xo farther 
restriction mill be imposed on q.

If c is not the zero class, c =|= 0, it possesses a reciprocal 
class c 1 defined by the congruence cc = 1. Since—2r= 1, 
we get in particular

(1) 2—1 = — r = r-f-1,

and hence the classes of r and / + 1 belong to r. Thus the con
gruence

r2y 1,

which is equivalent to

ry = ± 1, 
implies

y == 0 mod ido r.

Hence the expression r~y yields all quadratic residues exactly 
once, if y ranges over a complete system of residue classes 
modulo r.

II.
In this section we define some simple auxiliary functions of 

an arithmetical character.
II, 1. Let z denote the set of all residue classes o modulo 

q except the zero class:

(") e o.
This set z forms a group by multiplication. On this set we define 
a function t(o), which is a residue class modulo r, by
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r2T^ o2, q^O.(2)

It follows from the last remark in section 1 that the residue 
class r (p) is uniquely determined hy the definition (2). This 
definition of t (p) may also be written

(3) rT<?> ± p

It is immediately inferred that t has the following properties

(4)
(5)
(6)

t(—o) = r(p), 
t(PiP2) = *(Pi)  + *(p 2), 
t(± 1) = 0.

modulo r.

In consequence of (5) and (6) we get

(7) T (p) + T (p 2) = 0 modulo r.

In particular

(8) T (r) 1 r(—r) = r(r+l) modulo r

and hence for the reciprocal class

(9) t(2) —1 ss t(—2) modulo r.

II, 2. Let Z denote the set of all “three-sets” [p, cr, co], where 
co denotes a residue class modulo r, and p and cr denote residue 
classes modulo q with the additional condition that p is an 
element of z:

(Z) [p,cr,ct>],
p =|= () modulo q 
cr arbitrary modulo q 
co arbitrary modulo r.

Z comprises — q (q—l)2 elements. We now put

(10) cp (p, a) = p (per — 1 )

and define on the set Z a function g, which is itself a three- 
set, by

(H) = lQg’°g’Mg\ , 9? (P > <0 » 0) + T (p)],
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T being the function defined in 11,1; the congruence sign refers 
to modulus q for the first two numbers in the three-set and to 
modulus r for the last one. Since —o 1 0, lhe three-set 
g[Q,cr,co] belongs to Z. We can thus repeat the operation g, 
and we get

f/2 = ¡7 = Í?’
since

Z 1\—1-(—{? )

(12)
(—o \ — 0) =

o 1 {go — 1 + 1}

CO + T (o) + T (—O )

-1 / 1 z , , . \-o \~Q — 1)“!/

<7,

co modulo r by (4) and (7).

Hence g is an involutory transformation of the sel Z into itself. 
This transformation leaves no three-set invariant. In particular, 
the congruences

a a modulo q

co co modulo r

cannot hold simultaneously.
In fact, if o =|= +1, then r (o) + 0 modulo r, and thus

co = co + t (o) ^|= co modulo r;

if @ = + 1, we get from (10)

= <r=F 1 <7.

The elements of Z are thus distributed in pairs by g.
II, 3. Let z denote the set of all residue classes o modulo c/ 

except 0 and — 1 :

On this set z we define a function f (o), which is itself a residue 
class modulo q, by
(13) /(o) — d + r1).

In virtue of lhe condition (;') the class o exists, and it is 
neither 0 nor — 1. Hence f(o) is neither 0 nor — 1 . We can 
thus repeat lhe application of /’ and gel
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h (í?) ~ f (f (ß)) ~ — 1 + (1 + Q ) = — (1 + @) (1 + @) 1 + O (1 + q) ,

(14) /^(e) = — (i+e)~1,

(o) = f(—(i + (?) 1) — — 1 + 1 + £?

(15) A (e) = e-

This shows that /' is a one-one transformation of order 3 in 
the set z.

We may therefore arrange the elements of z in cyclical sub
sets of three elements except when invariant under f. We repeat 
for convenience the general cycle as expressed by (13), (14), 
and (15):

(16) o—> — (1-j-o 1) —>— (l+{?) 1 Q

and note the special case, having regard to (1):

(17) l->—2->r^l.

The latter is not invariant, since we have assumed </ 4= 3.
It is observed that

(18) (^) = ? (1 + 2 *)  (1 + (?) 1 = 1.

II, 4. Let Z' denote the set of three-sets with the first symbol 
belonging to /:

[(?, cr, <ü],
q =|= 0 and —1 modulo q 
a arbitrary modulo q 
o) arbitrary modulo r.

Z' contains — q (q — 1) (q— 2) elements. On this set we define a 

function G, which is itself a three-set, by

(19) G[g,cr,co] = [^Cr, <rG, coG] = [/(o), <p (o, <?), m + r (p)].

This three-set belongs to Z', since belongs to z. For the 
same reasons as with Z, this transformation G leaves no three- 
set invariant; in particular, the second and third symbol are 
not invariant simultaneously. By repeating this operation we get
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(21)

(22)

G2[ø,tf,co] = G [oG,aG,æG] = [qg¡ , aGz, coG¡¡]

[f2 (?), %2 (?’ (7)> W + T (o) + T (/(o))J ,

(20) ^(e,^) /■(«){/’((?) 9? (^> <?)—U
— O+(? ){~G+i? ) Q ({?cr—O—1}

(1 + o)!(1tO J) (j?tf — 1 ) + Q 

= (i +e){(i +e)tf — i},

and with one more repetition

G3 tf, co] = G [@G , tfG , ft>G ] = [o, tf, co], since

/s (o) O by (15),

<Ps(q,g) Æ (ø) {/à (p) ^2 (c » <0 ~ 1 )

— (1 + o) { — ( 1 + p) ( 1 + q) ((1 - r q) o — 1)—1) 

(1 + p) {(1 + p)tf — 1 + 1} = tf,

co + r (p) + r (/'(p)) + r (/^ (p)) = ttf modulo r by (18), (5) and (6).

Thus G is a one-one transformation of Z' of order 3 without 
any invariant element, and it distributes the elements of Z' in 
cycles of three each, the explicit scheme being 

[p, a, co] -► [— (1 + p !), p (per — 1), co + r (p)]

| — (1 +e)~\ (1 + e) [(l + p)tf -1), co + t(o) + t(1 +o_1)J 

-> [p, tf, co].

Ill.
Let r (c/+ 1) simple, oriented polygons be given, each of which 

has q sides. We intend to combine these polygons into a two- 
dimensional, closed, orientable manifold 0 by certain identifi
cations of pairs of sides. This is done in an abstract, purely 
topological way so that (in this section and the next two) no 
question of metric comes in.

As in section II, the symbol co denotes residue classes modulo r, 
while q and tf denote residue classes modulo q. Let r of the polygons 
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be denoted by P(co) and called “central polygons”, the remaining 
qr polygons being denoted by P (a, co) and called “peripheric 
polygons”; here co ranges over all residue classes modulo r and 
a over all residue classes modulo q. Let s(cr,co) denote the sides 
of P(co), the numbering o of these sides proceeding in the positive 
sense of the oriented polygons, and s(o, a, co) the sides of P(cy, co), 
the numbering q likewise proceeding in the positive sense. With 
these denotations we define the following identifications:

(A) For all values of a and co the side s(a,co) of P(co) and 
the side s(0,cr,co) of P(a,co) coincide with opposite senses.

This disposes of all sides of all central polygons and of the 
sides s(0,cr,co) of all peripheric polygons. So we are left with 
all sides s(@,cr,co), q =|= 0, of the peripheric polygons, and these 
sides thus correspond to the set Z of three-sets. For these sides 
we define:

(B) The coincidence of these sides in pairs is given by the 
involutory transformation g: The side s(g,cr,co) coincides with 
s (q , cr, cog) with opposite senses.

Since the two last numbers of the three-set are not left inva
riant simultaneously, no side coincides with a side of the same 
polygon.

We now establish the cycles of vertices resulting from these 
identifications by turning around these vertices in the positive 
sense. Starting in the central polygon P (co) we leave it over the 
side s(cr,co) and enter across lhe coinciding side s (0, cr, co) accord
ing to definition (A) into the peripheric polygon P(o,co). The 
preceding side of this polygon is s(—l,a,co), which coin
cides with the side s (1, cr + 1, co) of the peripheric polygon 
/J(cr+l,co) according to definition (B). The preceding side of 
this polygon is .$(0, cr + 1, co), which coincides with the side 
s (or + 1, co) of the central polygon P(co), and the preceding side 
of this polygon is s(<r,co), with which we started. So we get a 
cycle of vertices as illustrated by fig. 1.

In this process cr and co are arbitrary within their range. 
Therefore all vertices of central polygons are involved. We may 
also remark that, if we leave an arbitrary peripheric polygon 
P(cr,co) by crossing its side .s-(—l,cr,co) and turn in the positive 
sense, we get the cycle of vertices just now established. Like
wise, if we leave P(o,co) by crossing its side s(0,cr,co) and 
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turn in the positive sense, we get a cycle of vertices of the same 
type, o' being replaced by a — 1.

In the remaining cycles of vertices, therefore, only peripheric 
polygons are involved and. turning always in the positive sense, 
we have to leave /J(o-,co) by crossing a side s(o,cr,co), where

o belongs to the set z, (o =|= 0 and — 1); thus the three-set [@, o', coj 
belongs to Z. This side coincides with s (gg, crg, cog) = s(—o—1, 
<p (q, u), co + r (p)) of P (cp (q, o') , co + t (p)), and the preceding side 
of this polygon, which we have to cross in leaning the polygon, is

s (— o 1 — 1 , cp (q, o) , co + T (o),) = s (qg, aQ, coG).

Therefore we leave the next polygon by crossing the side 
s ’ an^ again we leave the next polygon by crossing
the starting side .s-(o,o',w) in virtue of (21). So again, we have 
a cycle of three vertices, as illustrated by tig. 2; compare (22).

In both cases the three polygons arranged round a vertex 
are different.
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It follows from this construction that ø is a closed surface. 
Moreover, it is orientable, since the orientation of any two neigh
bour polygons are in accordance, the common side being oppo
sitely sensed.

We conclude this section by computing the genus p of 0.

The number of polygons is a2 — (ç+l)r. Thus the number of 

different sides on ø is ~ «<z(f/~Or, an(l the number of 

vertices on ø is «0 — — 7(7 + 1) r. From this we get by Euler’s 

formula

2 — 2/) = «0— «t+«2 = /■(</+ O — ^-7) = ^(7 —0 (<7+ 0(6 — 0 

and hence

(23) p = 1 + ~ (q2 — 1 ) (7 — (5) = (7 + 2) (7 — 3) (7 — 5).
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We list the smallest values:

7 = 3 5 7 1 1 13 • • • •

p = 0 0 3 26 50 • • • •

(23) also holds for q = 3 and q — 5, which might have been 
included in the preceding considerations by adding a few special 
remarks. In these cases the structure af 0 is that of a tetrahe
dron or dodecahedron, respectively.

IV.
In this section we establish by a well-known process1 the 

fundamental group (Poincare group) of ø by generators and 
generational relations in a special form derived from the construc
tion of 0. Inside each polygon we select a representative point, 
which may be denoted by the same symbol P(co) or P(ct, co) 
as the polygon itself. From each representative point we draw 
an oriented path, called “elementary path’’, to the representative 
point of each of the q neighbouring polygons and denote it by 
cz (---------■), the paranthesis including the same symbols as the

1 See for instance H. Seifert and W. Threlfall, Lehrbuch der Topologie, §46.

side s(--------- ) which we cross in leaving the first polygon. So,
according to definition (A), a (ct, co) leads from P(a>) to P(o,co), 
and cz(0,ct,co) leads from 7->(ct,co) to P(co). We therefore have

(24) cz(0,ct,co) = cz(cr,co) 1.

Similarly, for o 0, according to definition (15), a (ø,ct,co) leads 
from 7j(ct,co) to P (pp (q , ct), a> + r (g)), and we have for its inverse

(25) cz (oy, ct^, coÿ) = <z (—o_1, 9? (o, ct), co + t (^)) = cz (o, ct, co) \ £ =|= 0.

These paths form on ø a network N of triangles as indicated in 
fig. 1 and 2 by doited lines, and this network Ar is dual to the 
network of polygons (e. g. the dual of the dodecahedron network 
is the icosahedron network).

Every path on the network zV between two representative 
points is a chain of elementary paths. We choose the point P(0) 
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as starting point. Next we define for each representative point 
an individual path on N connecting P(0) with that point in the 
following way: First, let the point be a P(co) and let the path 
envisaged be called h (co). For co — 0 we take the path h (0) 
to be empty. Then, by induction, when h (co — 1) is defined, 
we put

(26) h (co) = h (co — 1) a (0, co — 1) a (r, 0, co — 1) a (0, r + 1 , co),

co = 1,2, ••••,/*  — 1 modulo r.

[To control this, /z (co — 1 ) leads from P(0) to P(co — 1), cz (0, co — 1) 
leads from P(co— 1) to P(0,co— 1), a(r,0,co— 1) leads from 
P(0, co —1) to P(r + 1, co) by (10) and (8) and, finally, cz (0, r+ 1 , co) 
leads from P(r+l,co) to P(co).] Next, if the representative point 
is a P(a,co), we put for the path h(cr,co) leading from P(0) 
to P(a,co)

(27) h (cr, co) = /z (co) a (cr, co)

for all values of cr and co.
The fundamental group of ø is the group of homotopy classes 

of closed curves issued from a fixed point, for which we here 
choose P(0). Every closed path on N issued from P(0) can be 
composed of certain closed paths depending on the single elemen
tary paths, namely the leading from P(0) to the starting point 
of the elementary path a followed by this path cz itself and then 
by the /z^1 leading from its end-point back to P(0). We denote 
the homotopy class of such a path by Zc (--------- ) with the same
symbols in the parenthesis as for the corresponding elementary 
path a (—------). This finite set of k’s then generate the funda
mental group.

If a general closed path issued from P(0) is written down 
as a composition of the as, then its homotopy class is the 
product of the corresponding k's, as is seen by inserting between 
any two consecutive cz-factors the corresponding /z 1 h of their 
common point. Any equation between the cz’s therefore yields 
a relation between the corresponding k's. So we gel from (24) 
and (25) for all values of q,<j,co, for which these equations hold,

(28) k (a, co) k (0, cr, co) = 1 ,
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(29) k (o, a, co) k (— o 1, cp (o, o), co + t (p)) = 1, p =|= 0,

71 (cr, co) a (o, cj, co) h (cp (p, o), co +r (p))

lhe symbol 1 indicating the identity of the fundamental group. 
(29) may also be written

(29) k(o,a,co) k^cr^co^ = 1.

The homotopy class derived from the elementary path a (o', co) 
is according to the above definition the homotopy class of the 
product

h (co) a (o, co) h (o', co) 1,

h (co) and h (cr, co) being abbreviations for certain products of 
the «’s as defined above. Inserting h(a,co) from (27) we find 
that this reduces to the empty product. Hence

(30) k (cr,co) — 1,

and then (28) yields

(31) Å(0,o,co) = 1.

Consider the product of «’s making up h (co). The corre
sponding product of k's is the homotopy class of

/i (0) h (co) h (co) 1,

which reduces to the empty product. Thus the product of the 
k's corresponding to the «’s in h (co) is 1. (27) together w ith (30) 
then shows that this also holds for the /? (or, co).

This fact together with (30) and (31), when applied to (26), 
yields the relation k(r,0,co—1) = 1 for the values of co indicated 
in (26). We prefer to write this relation

(32) k (r, 0, co) = 1 , co = 0, 1, ■ • • •, r— 2 modulo r,

and we emphasize the fact that the value co = — 1 modulo 
r is not included in this relation (32).

Finally, the homotopy class derived from the elementary path 
« (p,cr, co), p =|= 0, is the homotopy class of the product 

1
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in consequence of the definition (B) of coincidence. This only 
yields the identical relation k (o, a, co) = k (o, o, co), since the 
h’s do not contribute.

To these relations we have to add the relations derived from 
the fact that the cycle of three cfs surrounding a vertex of 0 
bounds a simply connected piece of ø and thus belongs to the 
homotopy class of identity. For a vertex of the type of fig. 1 
this yields the relation

(33) k (<j, co) À’ (— 1 , cr, co) k (0, cr + 1, co) = 1,

and for a vertex of the type of fig. 2 the relation

34) k(g, (7, co) Å’(/(o), 92(0, c?), co + r(o)) Å'(/2 (e), <p2 (p, cr), co 4-r(o)

+ r(f(o)) = 1 ,

in which p ~|= 0 and — 1. With the use of the symbol G this 
relation reads

(34) ^'(q,c>,co) k(oG,aG,coG) k(oG2,GG2,coG2) = 1.

This completes the establishment of the generational relations 
of the fundamental group. Looking over the result, we see that 
we may omit the k(o, co) and their reciprocals, the /c(0, o, co), 
since they are identity according to (30) and (31). Then relation
(28) disappears, and (33) reduces to

(35) Å’(-1,(7, co) = 1,

while (29), (32), and (34) remain unaltered. We thus have the 
following result:

The fundamental group of ø mag be generated by the elements 
k({),(J,cn), g =|= 0, until (29), (32), (34), and (35) as generational 
relations.

One might suggest the elimination even of the k(r,0,co) for 
co =|= — 1 modulo r and of the k(— 1, a, co) in consequence of (32) 
and (35), and at the same time of their reciprocals k(2, r + 1, co+ 1) 
and k (1, a + 1, co). This would, however, destroy the full generality 
of relation (34), into which some of them enter for special values 
of o,o, co. We therefore prefer to keep them, but we may note 
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at once the consequences as to the reciprocals. We put them 
in the form

(36) k (2, r + 1, co) = 1 , co =|= 0 m od u lo r,

(37) k (1 , o', co) = 1 .

If we put o r, a 0 in (34), we get by (10), (17), (8), 
and (6)

A’ (r, 0, co) k ( 1 , /• + 1, co + 1 ) k (— 2, r, co + 1) = 1 .

Here the central factor drops out in virtue of (37). The recipro
cal of the last factor is Å(r+l,0,co) by (29), (10), (1), and (9). 
Thus, if co =|= —1 modulo r, the first factor drops out in virtue
of (32), and we get

(38) Å’(—2,r, co) — 1, co =|= 0 modulo r,

(39) Å*  (r + 1,0, co) = 1 , co =|= — 1 modulo r.

If co = — 1 modulo r, we get

(40) 7c (r, 0, — 1 ) = k(r+ 1,0, — 1),

and for their reciprocals

(41) Å-(2,r+l,0) = Å’(—2,r,0).

These last six relations (36) to (41) need not be included in 
the generational relations of the fundamental group, since they 
are consequences of the generational relations (29), (32), (34), 
and (35) established above.

V.
Let F denote the abstract group generated by three elements 

.8, T, U subject to the relations

Sq = 1 , T2— 1, U3=l, STF=1.

Eliminating U by means of the last relation we get for F a re
presentation by two generators S and T with generational relations
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(42)

(43)

(44)

1

7’2 = J

(S Tf = 1 .

We use this latter form and pay attention to relations (42) and 
(43) by only regarding exponents of S and T as residue classes 
modulo q or modulo 2, respectively. So (44) is the real working 
relation and, for convenience, we write it in different, but equi
valent forms:

(45) (ST)3 = 1, STS = TS 1T, TST = S lrTS \ (TS-1)3 = 1.

As a consequence of (45) we get

(46) TS_2T = (TS_1T)2 = (STS)2 = STS2TS.

We now take q to mean a prime q = 2r + l subject to the 
same restrictions as in section I and dehne the functions t (p), 
f (jf) and ç? (^, cr) and the transformations g and G as before. 
Moreover we introduce a function %(co) = the smallest non
negative residue of co modulo r:

% (co) = co modulo r, 0 < % (co) < r.

We denote by W the following element of F:

(47)
7» ___Q y»

W = TS TS -TS =

these two products being equal in virtue of (46). We also note 
the reciprocal of W:

(48)

Regarding as before q and cr as residue classes modulo q 
and co as a residue class modulo r, we introduce the subgroup 
H of F generated by the following elements:

49) Å'(e,a,co) = wWrtfrø 1 q =|= 0.
D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Mecld. XXV, 18. 2
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We set out to prove that these elements satisfy the relations
(29),  (32), (34), and (35) established in the preceding section 
for the fundamental group of 0.

If in (29) we insert the values given by (49), we get

TS<> TSo TS~,f I V~71 + T

Here we have made use of (12) in the last two factors. 
In (32) we have with co =|= —1 modulo r:

A-(r, 0, co) = \V7l(,,,) TSr TS~2 TSr )v-^(<-'+ i) = i

by (8) and (47), for rr (co + 1) = % (co) + 1 , since co — 1 
modulo r.

In (34) we get by inserting from (49)

771 (<o) ps? 7S' 1 TS— (? ’ W~71 + 7

. (w + r (o)) (o, <t) j’ <ç/(o) p^/t?)”1 pg—^(u, 6) W~71 + 1 + 7 d(?)))

. yjp71 ((,) + r (?) + r (/ (?) )) s ^2 (? ’ °) p (?) TS^2 1 I'S~~ fí IV—77

since by (21)

p (/) (o), p2 (o, <r)) = p3({?, o’) er modulo c;
and

t (9) + r (f (q)) + t (f2 (^)) 0 modulo r.

Here the underlined parts cancel. Moreover we have by (13) 
and (14) for the exponents of those powers of S which thereby 
become neighbours

^“^/(o) = £_1 —(1 +o_1) - - 1,

Í ((?) + /a (i?) “ G + (? ) — 0 + (>) — ( 1 + o) 1 (1 + £>) ^ — 1

We therefore gel

(<") TS'(TS

by using (45) and (14).
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Finally, in (35) we find by (45)

/v(—i,a,oj) = w^s^tst1 TS-1 ts~{,j+1) + = 1.

The elements (49) therefore also satisfy relations (36)—(41), 
since these are formal consequences of the four relations just 
proved. Especially we remark concerning the elements occurring 
in (40) that by (49) and (1) and (47)

(50) A- (r, 0, - 1) = IVr"1 TSr TS~2 TSr W~7l(0) = IVr.

Thus IVr is an element of H.

VI.
It is inferred from what has just been proved that the sub

group H of F defined in the preceding section is one-one iso
morphic either with the fundamental group of ø or with a factor 
group of that group. We set out to prove that the first case 
occurs. This is done by constructing from the group F a set of 
polygons and of identifications by the k(Q,cr,w) which corre
spond to the construction of 0 in section III. (This construction 
is based on a procedure indicated by W. Dyck in a footnote 
on pages 41—42 of Mathematische Annalen, vol. XX. Instead of 
the pair —2 and r used in the present investigations, Dyck uses 
a general pair of mutually reciprocal primitive roots a and ô 
modulo 7, thus without imposing any restriction on 7.)

Tí
Let a triangle stu be given with angles equal to —, 

n 
3’ 

I and 

respectively; see fig. 3. As we assume 7 >7, the triangle is

situated in the non-euclidean plane. A reflection in .s/ followed
2 n 

by a reflection in su is a rotation about s through an angle — 

in the positive sense. We denote this rotation by S, and hence 
Sq is identity. Similarly, T is a half-rotation about t, and U is 
a third of a full rotation about 11, if they are taken to be the 
product of two analogous reflections. The product of reflections 
shows that STU = 1-1 Hence S, T, and U generate a group of

1 A product is read like a composed function : First carry out U, then T, finally S. 
2*
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motions in the non-euclidean plane, which is our group F, and 
which we now generate by S and T with relations (42), (43), 
and (44). The shadowed triangle s//z0 of iig. 3 being derived

for the case

the group F. In 
of identity. Let

a fundamental 
inscribed with 

from it by an

1, S,
P(0)

fig. 4

from stu by reflection al st, 
domain for 
the symbol

the triangle su0 u is 
fig. 3 this triangle is 
the triangle derived 
arbitrary element e of F be denoted
with the symbol e. If e ranges over 
the whole of F, these triangles cover 
the entire non-euclidean plane. This 
is illustrated by 
of q = 7.1 

The triangles 
form a polygon
at the point s, which 
called the representative point P(0). 
In the triangle Sc> the side opposite 
P(0) is called s((T,0). Then S" TS~" 
is a half-rotation about the center 
of this side, and it carries the “cen
tral” polygon P(0) into the “peri

pheric” polygon P(cr,0), which has its side s(0,<7,0) coinciding 
with s (cr, 0) with opposite senses conforming to the orientation 
of the plane. The other sides of P(<r,0) are numbered .s(o,cr,0) 

s2---
with center 
will also be

in the positive sense.
This star of q + 1 polygons, each consisting of q triangles 

(each triangle being half white, half shadowed) is shown by 
fig. 5 for 7=7.

The triangles of the central polygon P(0) bear the signature 
S", those of P(0, 0) consequently TS", and those of P(a, 0) conse
quently Sa TS". The side of the latter opposite the center P(a,0) 
is s(o,<r,0). The triangle adjacent to S°TS" along s(@,tr,0) 
is S° TS" T, because the triangle T is adjacent to the triangle 1 
along the corresponding side uou. In order to make the side 
s(—2,r,0) of the peripheric polygon P(r,0) coincide with the 
side s(r+ 1,0,0) of the peripheric polygon P(0, 0) with opposite 
senses we must carry the triangle Sr TS “ T adjacent to s(— 2, r, 0)

1 The figures 4 and 5 have been reproduced from Klein-Fricke, Elliptische 
Modulfunktionen, vol. I.
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Fig. 4.

Fig. 5.
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• • r*  i 1 ,into the triangle TS , and this is done by the motion 

TSrrl(SrTS2T) 1 = TS'~} TS~TSr+i = IV,

see (47). The same motion IT carries s (2, r 4- 1,0) into s(r,0,0) 
for analogous reasons:

7;sr(sr"1 TS'-Tr1 = TSr TS~2 TSr = IV.

Thus IV can be thought of as a translation sliding the whole 
star downwards along the vertical diameter of tig. 5 at a distance 
equal to the length of that diameter. If this displacement is 
repeated co times, we get a star composed of a central polygon 
P(œ), whose triangles are lV,r\S'', and q peripheric polygons, 
P(o-,co), whose triangles are Ww Sa TS". Take co < r, thus co = n (co) . 
If for p 0 we want the side s (o, <r, co) of this last triangle to coin
cide with the side s (og, og, o)g) = s (— o_1, (p(o, a), (co 4~ r (<?))) 
of the triangle JV71 (w ~ T((*))  rpS' with opposite senses,
we make the adjacent triangle of the latter, thus tv7* i("+

°) TS~ ' T coincide with the triangle Wl (0,\sö TS". This is 
evidently done by the element k(q,a, co) defined in (49).

The r stars derived from the first one by IV<0, co = 0,1,
• • • - , r — 1 , form a singly connected piece Q of the plane, bounded 
by a polygon, whose sides correspond in pairs by those elements 
Å’(^,cr,co) which are not equal to 1. This shows that the con
struction of the subgroup II of F is a materialization of the 
fundamental group of the two-dimensional manifold ø defined 
in section III by abstract identification. The group H is here 
realized as a group of motions in the non-euclidean plane, which 
is a model of the universal covering surface of 0.

The fundamental domain Q of II consists of r (q 4- 1) polygons 
containing q triangles each. This shows that

(51) .i = r(q + 1) q = %q (q1—!)

is the index of II in F.
If the non-euclidean plane is denoted by I), we may speak 

of 0 as I) modulo II, which means that points of I) corre
sponding by elements of H are considered as identical. In the 



Nr. 18 23

same way, I) modulo F evidently is a non-euclidean manifold 
of genus zero, three points of which are singular with respect 
to the metric, namely those corresponding to s,t, and u. They 
may be called conical points. I) modulo II is a closed manifold, 
which covers I) modulo F with ./ sheets, and which possesses 
no conical points. Accordingly, II possesses no elements of a 
finite order.

VII.
We now want to prove that the covering of I) modulo F by 

I) modulo II is regular. This is equivalent to the assertion that 
II is self-conjugate in F. In order to prove this it is sufficient 
to prove that the generators of H are transformed
into elements of H by the generators T and S of F.

In preparation for this proof we state the following facts 
beforehand :

(52) TWT-1 = W_1.

This is immediately seen from (47) and (48). Also the definition 
of tt (x) implies:

(53) 71 (tT (x)) = 71 (x) ,

(54)
z x , z x i 0 if x = 0 modulo r 

7C (x) +tt (— X) = ... , „ , .1 r if x 0 modulo r,

(55) r27I<x> r2x modulo q,

2r .since r 1.
We now transform Å (o,cr,co) (where it is remembered that

o =|= 0) by T and get by (49), (52), and (10)

(56)
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T (o) m
odulo

O
n the other hand, suppose a =|= 0 and 

a 
=
|= 

Q 
and consider the product



Tlie above product therefore is equal to

Comparing this with (56) and slightly reducing the last argument 
of the third k we get

(57)

77c (o, a, w) 7”-1 =

•k (cr,O, — co)

•k(a 1 (o<j—1), — c7,t((t) — co)

•k(— o 1 (oa—1) 1,— o(oo——1)
. yy7l (<» + + 7l(—(0 — T(o))

In consequence of (54) the first factor of the right hand pro
duct is either 1 or VV r, and the last one is either 1 or Wr. 
Hence, by (50), the right hand member is an element of H.

We still have to supplement this result by a consideration 
of the cases cr = 0 and a = q \ which were excluded in the 
preceding computation. The two cases exclude each other. As- 

— 1suming o = Q , we get

77c(o,í?~1,w) 7’-1 = T\V:i(,^S" 'tS'TS' 1 TS(>W~7l{l"+ t(^ T

(57') = |V-7,Gu)7;síí TS" 1W1 + ’

Thus except for powers of lVr all the generators of the type 
o' = are transformed by 7’ into all generators of the type 
(7 = 0. Therefore the inverse is evidently also true. The explicit 
formula is

(57") 77c (p, 0, co) T 1 = n7-7,('M)-,ii-(,')k(o“1,o,-w)lV''r<w + 7(i,)) + :7<-,M-

We have thus proved that THT~1 = H.
In order to prove that Sf/S = H we start with generators 

of the following form:
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Â-(r, r2x,z) = lV'7<xLS'r2zKSr7;s-2TS-r(r/,2x-1) iv--'7<x+1»

= h’-'7<x)s/'2z ws~r2(z 1J H’-.-r(z+ i»

(by (49), (1), (8), and (47)). We form their product for increas
ing values oí z from z = 0 to z = zz— 1 and denote this product 
by ^(zz):

(58) 'P(n) = k(r, r2'°, 0) Jt(r. r2 *,  1) ■ ■ ■ k(r, n-1), n > 0,

and remark that 7z(0) means the empty product. We then get

W(n) = SWnS-r2'1 W~7l(n)

and from this we get some sort of commutation formula for
S and H”:

(59) SH’n = ’¿'(zz) \V7j(n}Sr2n.

This is applied to

Sk(g, g, co) S~1 = SW^S^TS“ TS'-1 + S~\

and we get for the first two factors of the right hand product

SWn(^ = F(%(to))

in consequence of (59), (53), and (55). Similarly, for the last 
two factors:

7Î (<’> + I(O)) ÇÇ— 1 _ F J)'jy7l(W + r(p))'|-l _

= [ ^(ttCío + t^))) W710” ' ^e))^20'^^"))]-!,

where we note that r2ííí<) o~ according to (2). Hence

Sk (q,g, co)S~ 1 = V7(.T (to)) IV1 S1’+ r2TS" TS''~1 TS~+ r 2+ V

HZ_.-r(w + r(o)) + T fø)))-l

— V7 (i? (to)) k (o , G + Z “"\ to) W (ti (to — T (o))) 1.
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Since the are elements of //defined by (58), this completes 
the proof of the invariance of H in F. The last formula together 
with (57), (57'), and (57 ") states explicitly the elements of // 
into which the generators of // are transformed by the gene
rators of F.

VIII.
Let Af' denote the set of all matrices

(A/') «
.y <V’

a ß 
y ô

= 1,

with integer elements and determinant 1 . This set M forms a 
group by multiplication. The matrices

(A/")

constitute a self-conjugate subgroup M" of A/'. The quotient group

(A/) M = m'/M"

is the modular group, the group of all linear fractional substi
tutions with integer coefficients.

The (principal) congruence subgroup modulo g of M means 
the set C of elements of M represented by those matrices which 
modulo ({ are congruent to an element of Af":

(C) ±E modulo

It is immediately seen that this set C forms a group and, 
furthermore, that this group is self-conjugate in M.

Usually, the two matrices

are taken as generators of Af. Since

T2 = -E, ,3
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they satisfy the relations

(60) 7’2 = 1, (ST)3 = 1

as generators of M, and it is well known that (60) is a com
plete set of generational relations for M. Since

s,i = P ß\\0 1/

all powers of S are different in M, but

Sq = yø 1) ” modulo 7,

and hence Sq belongs lo C. The same then is true of the trans
forms of Sq with arbitrary matrices m from 3/’:

1 = Í“ 1 ( 0 T —«77 a-q \
ô) 0 1. \— y . —y2q 1 — ctyq)

Here a and y range over all pairs of relatively prime integers, 
and the resulting matrix does not depend on ß and ó.

We can now form a subgroup () of C, namely the one gene
rated by all elements (61). Evidently () is self-conjugate in 37 
(and thus also in C), and the quotient group M/Q is obtained 
by using 8 and T as generators and adding to the relations 
(60) of M the single relation

Sq = 1.

Thus 3f/() is one-one isomorphic to the abstract group F of 
section V, and we write

(62) M/Q = F.

We now take the modulus q to be a prime subject to the 
conditions of section 1 and use the notations introduced in the 
previous sections. Il is remembered that all congruences are 
understood modulo q unless otherwise staled.

It turns out that (on account of the assumption 7 > 5) the 
group C contains more elements than its self-conjugate subgroup 
Q. We want to find a set of generators and generational relations 
for the quotient group C/Q and to establish the quotient group
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of C in M, for which, by a well-known theorem of group theory, 
we have

When speaking of matrices representatives of the

quotient group M/C, the integers a,ß,y,0 may be freely replaced 
by other members of their residue class modulo q and, more
over, the sign of all four numbers may be changed simultane
ously. Under such operations the determinant remains = 1 mo
dulo q. We apply this to the following products:

Thus modulo q we have for W a diagonal matrix as a repre
sentative matrix. For the powers of IF we thus get

(2n 0 \
^0 2—n/

and these are all different for 0</i<r in 
assumption of section I that 2 belongs to r.

consequence of the
For n — r, however,

(63)

Thus IFr belongs to C, but no smaller power of IF.
In the same way we want to find a matrix representing the 

product k (q, a, co), defined by (49), and we get in turn:
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Now k(o,a,co) arises if we apply the factors W71'“1' in front 
and +in the rear of (64). But since both IF and the
element (64) are represented by diagonal matrices when considered 
as elements of M/C, they are interchangeable, and we therefore 
multiply (64) by + Now

-T (co)—7r(co + r(o)) —T (o) modulo I'.

Hence, in virtue of (63), we only have to multiply (64) by

" \ 0 2’M - \ 0 (-rT’M \0 ±g-1/

in consequence of (1) and (3). In both places we have the 
positive sign, or in both places the negative sign. We hereby get 

(65) Å*  (^, cr, co) = ± E.

The Å'(;?,cr,co) are by their definition products of S and T. 
(65) shows that they belong to C. Together with the generators
(61) they generate a certain subgroup C' of C. For this we have

by (62) and the fact that the k((j,(j,co) generate II when they 
are considered as elements of F. Thus the index of C in Af is 
equal to the index ./ of II in F, which was found in (51).
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On the other hand, the index of C in M may he easily 
established: In a matrix (a of M' the elements cc and ß can-

\y oj
not both he divisible by q. But take any two numbers «0 and ß0 
which are not both 0 modulo q. Then two numbers a and b 
exist such that « = a0 + aç and ß — ßoß~bq are relatively prime. 
Let y0 and d0 be so chosen that aö0 — ßy0 = 1. Then the rela
tion aö — ßy = 1 holds for y = y0 + p«, ô — d0+ vß with arbitrary 
values for p. The choice of residue classes modulo q for a0 and 
ß0 admits q2—1 combinations. For each of them there are q 
possible choices of the class of v. Since at least one of a and ß 
are 0, the choice of i> implies q different residue classes for 
at least one of the numbers y and <5. Thus, in all, the matrices 
fall into q (q2—1) residue classes modulo q. Taking the simul
taneous change of sign for all elements of a matrix into con

sideration, this corresponds to — q (q2—1) different representa

tive matrices for the elements of MlC. Since this number coin
cides with the value j in (51), and since C is known to be a 
subgroup of C, we infer that C' = C.

We can thus generate the congruence subgroup modulo q of 
M by taking the generators (61) and (65) together. This system 
reduces to a finite system of generators for C by the matrix m 
in (61) being made to range over a suitable set of j matrices 
which are mutually non-congruent modulo q. The usual point 
of interest is not so much C as C/Q = H. This group then is 
generated by elements Å'(o,cr,co), q =|= 0, with (29), (32), (34), 
and (35) as generational relations. The quotient group of C in M, 
which is at the same time the quotient group of H in F, has 
S and T as generators, and a system of defining relations is 
obtained by adding the relations Å'(@,ct,co) — 1 expressed in S 
and T to the relations (42), (43), and (44) of F.

This system of relations is, of course, capable of abundant 
reduction, and no attempt is made here to reduce it to simple 
forms. It is for instance well known1 that in the special case 
of q = 7 the step from F to F/II can be carried out by adding 
one single relation to the relations of F, namely the relation 
(S4 Ty = .

1 See Burnside, Theory of Groups of Finite Order, p. 422.
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Note.

After the preceding study had been sent to the printer, it came to 
my knowledge that Mr. Hermann Frasch had, in vol. 1(18 of the Ma
thematische Annalen in 1933, published an article Die Erzeugung der 
Hauptkongruenzgruppen für Primzahlstufen, which had escaped my 
attention. On examining this earlier article I found a rather far-reaching 
consonance with my own investigations especially concerning the arith
metical formalism, which I had treated explicitly beforehand in sec
tion II, but which is contained implicitly in Frasch’s development, and 
also concerning the choice of generators k(o,<>,«>), which correspond 
to the 17/ H T in Frasch’s notation, and therefore also the relations 
between these generators. Moreover, Frasch goes into the question of 
the reduction of this system of relations, which I leave aside.

If, nevertheless, I maintain the publication of my investigations unal
tered, I do so on the ground that the chief means of research is diffe
rent in the two papers. Frasch bases his work on the powerful method 
of Reidemeister and Schreier for the abstract characterization of sub
groups of given abstract groups contained in vol. V of the Abhandlungen 
aus dem mathematischen Seminar der Hamburgischen Universität. (Ry 
the way, this method would not be necessary for the establishment 
of a system of generators, since such a system follows directly from 
formula (9) on page 231 of Frasch’s paper). On the other hand, my 
treatment is based on the most elementary notions of two-dimensional 
topology without recurrence to Reidemeister and Schreier’s method. 
Upon comparing these two ways of approach 1 found that they throw 
some light on each other and that this might justify what could other
wise be called a re-publication of results. For instance, the choice of 
the /i(w) and /i(<>,.«) in section IV can be taken as an illustration of 
Schreier’s condition (F). The establishment of a complete system of 
generational relations by simple considerations of surface topology must, 
in each special case, be simpler than the general mechanism of the 
Reidemeister-Schreier method, which leads Frasch to rather elaborate 
calculations. But I am pleased to call attention to Frasch’s interesting 
use of this method, following an earlier paper by Rademacher, the 
more so as his section 7 hints at more general applications and even 
touches on the illustration by means of surface topology.

Indleveret til selskabet den 13. december 1949.
Færdig fra trykkeriet den 30. marts 1950.


